Disciplina: Física Experimental 2 Professor(a): Alunos:

Relatório 5: Corda vibrante

Corda homogênea

1. Use a amostra da corda disponível em sua bancada para determinar a densidade linear da corda, μ , bem como a sua incerteza. Preencha a tabela abaixo com os valores obtidos. Identifique o tipo de corda utilizada. Escreva a equação utilizada para determinou μ e também sua incerteza. (0.5 pt)

Corda:		
$m_{corda} =$	+/-	
1 =	+/-	
$\mu =$	+/-	

2. Antes de escolher a Massa M que ira usar para tensionar a corda e o comprimento L (distância entre a bobina e a roldana) verifique se com esses valores é possível vizualizar os primeiros harmônicos (n=1,2,3,..) com uma frequência razoável. Coloque os valores selecionados na tabela abaixo. Em M , não se esqueça de incluir a massa do suporte. Use $g=(9,7879\pm0,0001)m/s^2$. Escreva a relação que permite determinar v a partir de T e μ . Detalhe como calculou as incertezas. (1.0pt)

M =	+/-	
T =	+/-	
v =	+/-	
L =	+/	

3. Realize o experimento variando a frequência do gerador e encontrando os modos normais de vibração d orda. Wilize o L(distância entre a bina-roldana) que determinou no item anterior . Descreva como determinou λ e as incerteza de λ e λ^{-1} . Explique também como estimou a incerteza da frequência. Preencha a tabela orda valores orda bitidos.(1.0)

L =	L =				
i	$\lambda \pm \delta \lambda$	$\lambda^{-1} \pm \delta \lambda^{-1}$	$f \pm \delta f$		
1					
2					
3					
4					
5					
6					
7					

- 4. De acordo com o modelo teórico esperamos uma relação $f(\lambda)$ do tipo $f = v/\lambda$. Faça o gráfico de $f \times (1/\lambda)$ no papel milimetrado. (1.0)
- 5. Obtenha o coeficiente angular da reta ajustada aos seus pontos . Considere uma incerteza de 5% na medida do coeficiente angular, Escreva corretamente seu resultado. (0.5)
- 6. Compare o valor de v obtido do gráfico acima com o valor de v obtido pela relação com Tensão e a densidade linear da massa da corda (item 2) . Considere a incertezas das medidas e a discrepância entre os valores. (1.0 pt)

Corda sedimentada

- 7. Use amostra das cordas disponível em sua bancada para determinar a densidade linear, μ , de cada corda, bem como a sua incerteza. Escreva a equação utilizada para determiar μ e também sua ncerteza. Escreva abaixo os valores obtidos. Identifique a corda 1 e a corda 2. (1.0pt)
- 8. Sua bancada está montada com uma corda segmentada consistindo da corda tipo 1 e tipo 2. Meça a distância L_1 e L_2 como indicado na figura 7.3 do roteiro. Com o valor da Massa que tensiona a corda sedimentada e considerando o valor de g dado no item 2, Determine, deixando claro como calculou, as velocidades de propagação em cada corda. Coloque os valores medidos e os calculados no espaço abaixo. (0.5pt)

9. Coloque na tabela abaixo os valores de : n, λ λ^{-1} e f , bem como de suas incertezas, para cada corda. (1.0pt)

n	f(Hz)	$\lambda_{l}(cm)$	λ ₁ -1 (cm)-1

n	f(Hz)	λ_2 (cm)	λ ₂ -1 (cm)-1

- 10. Faça os grafico de f x $\lambda^{\text{-1}}$, para ambas as cordas . (1.0pt)
- 11. Determine a velocidade de propagação v , em ambas as cordas . Considere um erro de 5% para o coeficiente angular obtido. Compare os valores obtidos, considerando as incertezas e a discrepância, com os valores obtidos no item 7. Comente seu resultado . Caso necessáro, use uma folha em branco adicional para completar sua resposta. (1.0pt).
- 12. Com os valores das velocidades de propagação em cada corda determine o índice de refração relativo entre os dois meios de propagação. Detalhe os seus cálculos. (0.5 pts)